Improved substructuring method for eigensolutions of large-scale structures
نویسندگان
چکیده
منابع مشابه
IMPROVED BAT ALGORITHM FOR OPTIMUM DESIGN OF LARGE-SCALE TRUSS STRUCTURES
Deterring the optimum design of large-scale structures is a difficult task. Great number of design variables, largeness of the search space and controlling great number of design constraints are major preventive factors in performing optimum design of large-scale truss structures in a reasonable time. Meta-heuristic algorithms are known as one of the useful tools to d...
متن کاملAn Algebraic Substructuring Method for Large-Scale Eigenvalue Calculation
This paper is concerned with solving large-scale eigenvalue problems by algebraic substructuring. Algebraic substructuring refers to the process of applying matrix reordering and partitioning algorithms to divide a large sparse matrix into smaller submatrices from which a subset of spectral components are extracted and combined to form approximate solutions to the original problem. Through an a...
متن کاملA TWO-STAGE METHOD FOR DAMAGE DETECTION OF LARGE-SCALE STRUCTURES
A novel two-stage algorithm for detection of damages in large-scale structures under static loads is presented. The technique utilizes the vector of response change (VRC) and sensitivities of responses with respect to the elemental damage parameters (RSEs). It is shown that VRC approximately lies in the subspace spanned by RSEs corresponding to the damaged elements. The property is leveraged in...
متن کاملEvaluation of Close-Range Photogrammetric Technique for Deformation Monitoring of Large-Scale Structures: A review
Close-range photogrammetry has been used in many applications in recent decades in various fields such as industry, cultural heritage, medicine and civil engineering. As an important tool for displacement measurement and deformation monitoring, close-range photogrammetry has generally been employed in industrial plants, quality control and accidents. Although close-range photogrammetric applica...
متن کاملRevisiting the Nystrom method for improved large-scale machine learning
We reconsider randomized algorithms for the low-rank approximation of symmetric positive semi-definite (SPSD) matrices such as Laplacian and kernel matrices that arise in data analysis and machine learning applications. Our main results consist of an empirical evaluation of the performance quality and running time of sampling and projection methods on a diverse suite of SPSD matrices. Our resul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Sound and Vibration
سال: 2009
ISSN: 0022-460X
DOI: 10.1016/j.jsv.2009.01.015